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PURPOSE 

To determine the effect of random fluctuations of the 

magnetic field, radio frequency, and cavity voltage on the 

growth of the phase area associated with synchrotron motion. 

The synchrotron motion will be represented only in the linear 

approximation. Application is made to booster. 

EQUATIONS OF MOTION 

The notations and formalism in a previous note on linear 

synchrotron motion 1 will be employed. In order to introduce 

fluctuations the reference motion is altered to the following: 

. 
WR = V+AV -- sin $I,, 2nh 

and 

(1) 

(2) 
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where AV, AwR, and AeRF represent the instantaneous fluctuations 

of the corresponding quantities from the desired values. The 

change in angular orbital frequency AoR arises from a change 

in the magnetic field according to 

AWR 
aoR = aR AR = -wR% = --T p _ -T ~, *R 9 - 'R AB 

YT YT 
(3) 

where yT is gamma at the transition energy and B the azimuthally 

averaged magnetic field. An analysis similar to that previously 

employed 1 gives 

. vcos$R 
n + 

AVsin$R 
J = - 2ah 2ah (4) 

and 

h2w2, . 
rl= R R J - hAwR + AuRE 

ER 

for the synchrotron motion (J,nI). Changing the independent 

variable to 

t h2w2, 
s = 

I 
R R dt 

0 ER 

(5) 

(6) 

and designating differentiation with respect to s by a prime, 

Eqs. (4-5) become 

and 

where 

J’ = -Kn + F 

II’ =J+G, 

(7) 

(8) 
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K= 
ERVcos$R 

2Th3w21c ' RR 

F= 
ERAVsin$R 

2rh3w2K ' RR 

(9) 

(10) 

(11) 

FORMAL SOLUTION OF EQUATIONS OF MOTION 

Two real independent solutions of the homogeneous equations 

will be used as integrating factors for the inhomogeneous 

equations. Thus let 

J; = -Knl II; = Jl (12) 

J; = -Kn2 4 = J2 (13) 

These solutions possess the property that n2Jl - nlJ2 is a 

constant. Choose the solutions such that 

'IzJ1 - n1J2 = 1. (14) 

Multiply Eq. (4) by nl, Eq. (5) by J1, integrate each by parts 

and subtract. Similarly multiply Eq. (4) by n2, Eq. (5) by J2, 

integrate each by parts and subtract. The results may be put 

in the form 

nlJ - Jln = X1 + H1 (15) 
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and 

where 

and 

n2J - J2n = X2 + H2, 

x1 = nl(O)J(O) - Jl(0)n(O), 

x2 = n2(0)J(O) - J2(0)n(O), 

I 

S 

I 

S 

H1= o nlFds - JIGds, 
0 

I 
S 

I 

S 

H2 = 0 llZFdS - 

J2Gds. 
0 

Simultaneous solution of Eqs. (15-16) for J and n gives 

J = Jl(X2+H2) - J2(Xl+Hl) 

and 

II = nl(X2+H2) - n2 (X1+H1) . 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

GROWTH IN PHASE AREA DUE TO RANDOM FLUCTUATIONS 

The invariant W associated with the homogeneous equations 1 

evaluated using the solutions of the inhomogeneous equations 

will increase with time because of the perturbations F and G. 

In order to have W represent motion matched to the small ampli- 

tude bucket shape one chooses 

(23) 
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Then 

a = -l@l = 

2 -(n1J1+n2J2) 

and 

y = $(1+a2) = J; + J; . 

This last equation is evident only after employing Eq. (14). 

The unperturbed invariant now becomes 

1 
2 

- J2(X1+H1) 

+ a J1(X2+H2) 
L 

- J2(Xl+H1) 
I [ 

* nl(X2+H2) - n2 (X1+Hl) I 

1 1 
2 

+ z", nl(X2+H2) - n2(X1+Hl) . 

(2.4) 

(25) 

(26) 

After considerable algebraic reduction employing Eqs. (23-25) 

one has 

1 w = $Xl+H1) 2 + $(X2+H2)2 (27) 

which for s = 0 gives 

(28) 

STATISTICAL TREATMENT OF FLUCTUATIONS 

Chandrashekar2 shows that a density distribution p(W,t) in 

which the variable W is governed by a random walk process obeys 

the Fokker-Planck equation 
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(29) 

where 

D1 
d = x (AN AV 

( :) (30) 

and 

D2 = g ((AW2jAV t (31) 

the brackets representing ensemble averages. 

By associating AW with W(s) - W(0) one has from Eqs. 

(27-28) 

&(AW) = Xlirl + X2fi2 + HII+ + H2fi2 (32) 

and 

2 * = 2X1H1Hl + 2X1X2 
. . 2 * (HlH2+H2H1) + 2X2H2H2 (33) 

where higher order terms in Eq. (33 ) have been dropped. For a 

random process 

(qAv = 0 . 
0 H2Av= O. (34) 

By the ergodic theorem ensemble averages and time averages are 

identical. Hence 

$ cAw)A" = $$:+H;) (35) 

and 

& ((AW)2),, = $(x,H~+x,H,)~. (36) 
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This last equation after employing Eqs. (28) and (35) may be 

written as 

& ((AW)2)A, = 2W(O&AW}Av + +[X:-X;)(H;-H;) + 2XlX2HlH2. (37) 

2 In Appendix A it is shown that the terms Hl - Hi and HlH2 have 

zero mean values. Hence Eq. (37) becomes 

& (W)2)Av = 24 jAW)Av (38) 

where the evaluation of W at t = 0 is considered to be the value 

of W at t on a time scale in which appreciable diffusion occurs. 

The Fokker-Planck equation, after employing Eq. (38) 

becomes 

g = [t&hw] &.J (%) . (39) 

Clearly it is useful to introduce a new time variable w such that 

w= 

Then Eq. (39) becomes 

(40) 

which has a fundamental solution. 

with the properties 

(41) 

(42) 
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m 

pdW = 1 
0 

(43) 

and 

(44) 

Since the time variation of W averaged over the distribution, 

here taken initially as a 6-function, is a measure of the growth 

in phase space associated with the particles, a determination 

of w is the significant quantity to be found. To this end, 

Eqs. (35) and (40) give 

w = + j: i (H:+H$ dt (45) 

thereby reducing the problem to a determination of H: + Hi. 

If the individual contributions to the fluctuations are 

independent, one may consider each one in turn and add the 

results. Of course, if feedback is employed to correlate AtiR 

with AU&., the problem is more complex and is not considered 

here. For convenience, let 

F; 5 fAV or 
sin+, 

f= 2nh ' (46) 

or 

and 

GRFs = gRF AWFtF 
or 

%t gB = - 
Y;B 

4* = 1 

(47) 

(48) 
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where i is given by Eq. (6) 

Appendix A gives for the contribution to Hi + Hi due to 

cavity voltage fluctuations 

I 

t 
@(t)f2(t) Jcav(S2)dt 

0 

(49) 

where Jcav(S) is the spectral density of the fluctuation volts 

per turn (power spectrum). Similarly 

I 

t 
v(t)g;(t)J Mag(Q)dt 

0 

and 

(H:+H;)RF = TI It v(t)J,(Wdt. 
0 

(50) 

(51) 

In Eqs. (49-Sl), (3 and y are given by Eqs. (23) and (25). The 

spectral densities Jcav(Q), JNag(S), and JR,(Q) are given in 

the Appendix. The frequency 6E is the synchrotron frequency 

. 
a=$. (52) 

APPLICATION TO BOOSTER 

Only the random fluctuation AtiRF is significant in produc- 

ing a growth in longitudinal phase space area associated with 

the beam. The function y(t) characterizing the beam bunch shape 

assuming a constant bucket area regime 
3. 1s shown in Fig. 1. 
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For an estimate of the growth let the captured beam have zero 

phase space area. Then Eq. (44) gives the average value of 

W = E/2~r to be expected at a later time due to random flUCtUa- 

tions in the frequency correcting circuit. Combining Eq. (45) 

with Eq. (51) and using Eq. (A-23) for the spectral density 

gives 

E = 2rkT It % I:Y.\TRR(G) 12.Real {Z,(Q)} dt (53) 
0 

The transfer function depends on the synchrotron frequency R, 

but, since y is peaked at transition, use TRF(0). The impedance 

Z,(n) may be considered independent of frequency, hence also 

use Z,,(O). Thus' put 

kT = 5 x lO-21 J 

TRF(0) = 2lI X 7.5 MHZ/v 

Z,(O) = 1 Mfi 

Appropriate integration using curve in Fig. 1 gives 

u(t)dt = 87 x LO+ 2 eV-set . 

Hence at transition the beam area has grown by 

E = .006 eV-sec. (one bunch) 

This is to be compared with an initial beam area of 

E beam = * 02 eV-sec. (one bunch) 
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Hence the growth is a significant fraction of the initial beam 

since numerical studies 5 show that the bucket area is just 

sufficient to contain the beam. 

The missing bunch6 phenomenon could possibly be explained 

by postulating randomly distributed central holes in the trapped 

beam due to the microbunches from the linac beam. Since there 

are approximately 6 microbunches per booster bunch and the 

outermost microbunches are expected to be mixed by nonlinear 

forces, it is possible that randomly distributed holes could 

be present in the linear region. Subsequent growth of the beam 

area could leave only the holes for some bunches. This explan- 

ation, of course, assumes that all bunches are subject to some 

loss. 
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APPENDIX A. Various Integrals and Nyquist's Theorem 

Using EqS. (19-20) to define Hl and H2 one has 

22 ss 
H1+H2 = o o I I [ 

'71 (sl) 'I1 (s2) + n2 (sl) ri2 (s2) 1 F(sl)F(s2)dslds2 

s s 

-I I c nl(s1)Jl(s2) + n2(sl)J2(s2) 
0 0 1 F(sl)G(s2)dslds2 

s s 
-I I ~l(s2)Jl(s1) + n2(s2)J2b1) 

0 0 c I 
F(s2)G(sl)dslds2 

s s 
+ 

I I [ J1(s1)J1(s2) + J2(s1)J2(s2) 0 0 1 G(sl)G(s2)dslds2. (A-1) 

2 2 s s 

H1-H2 = 0 I I 0 c 
Tll (sl) Tll (s2) - n2(s1)n2(s2) 1 F(Sl)F(s2)dslds2 

s s 
-I I [ nl(s1)Jl(s2) - n2(s1)J2(s2) 

I 
F (sl) G(s2) dslds2 

0 0 

s s 
-I I [ ~~(s~)J~(s~) - v2(s2)J2(s1) 1 F(s2)G(sl)dslds2 0 0 

s s + I l [ J1(s1)J1(s2) - J2(s1)J2(s2) 1 G(sl)G(s2)dslds2. (A-2) 
0 0 

s s 
2HlH2 = o o I I [ 111 (sl)n2(s2) + nl(s2)n2(s1) Fbl)F(s2)dslds2 1 

s s 
-I I [ n1 (s,)J,(s,) + n2(s2)Jl(S1) Fbl)G(s2)dslds2 

0 0 1 
s s 

-I I c nl(s1)J2(s2) + ~~(s~)J~(s~) 1 F b2) G (sl) dslds2 
0 0 s s + I l + Jlb2)J2b1) 1 G(sl)G(s2)dslds2. (A-3) 
0 0 
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Solutions of Eqs. (12-13) consistent with Eq. (14) may 

be taken as 

'11 = 47 sin 
I 

' ds ' ds o r , o r - c% sin (A-4) 

and 

q2 
= JB cos I ' ds ' ds ' ds o B , o B + ~1 cos o r . (A-5) I 1 

Since F and G are considered to be random variables having no 

correlation, all the integrals involving products of F and G 

average 

become 

2 2 HlfH2 = 

+ 

2 2 Hl-H2 = 

to zero. The remainder, after using Eqs. (A-4) and (A-5) 

/=/Id- F(sl)F (s2) cos 1;; p * dslds2 

II,:, Jg$=g$ 
c 

F+a(s$ a(s,)] cos 11: p 

+ 
C 
u(sl)-a(s2)] sin ,:: p] dslds2 , 

(A-6 ) 

-Iljl dm F(sl)F(s2) cos (1;' F + ,I2 F)dslds2 

t 

(A-7) 
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2HlH2 = !IlIdm F(sl)F(s2) sin [I;' F + 1;' $jdslds2 

- 1~1~ J= 
! 

[1-a (sl) a(s2)] sin I,:' F + II2 F] 

+ s1 * + 52 s 1 Ii o@ OR 
dslds2. (A-8) 

It is expected that F and G are each autocorrelated only for 

sl= 2. - s For s1 near s2 Eq. (A-6) gives a finite result. Notice, 

however, that Eqs. (A-7) and (A-8) contain rapidly varying trigono- 

metric terms for s 

Hence, 
1 and s 2 and, because of this, have zero means. 

2 2 Hl - H2 = 0, (A-9) 

and 

HlH2 = 0. (A-10) 

The contribution to Hf + H; from F becomes, after setting 

t2 = tl + r and letting the limits on T be - +m since only the con- 

tributions near T = 0 are significant, 

(H:+H;)cav = jdr cos n-c /tJmf(tljf(tflr). 
0 -m 

AV(tl)AV(tl+r)dtl. (A-11) 
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Note the change in independent variable from s back to t and the 

use of Eq. (47) in expressing F. Also note that the synchrotron 

frequency R 

(A-12) 

has been introduced and that because t2 g tl 

I t2 R dt G Cl-r. (A-13) 
% 

Since the inner integral in Eq. (A-11) is the product of a smooth 

function of time, say R(t), with a random function AV(t)AV(t+T), 

it may be evaluated as follows. Designate the integral by I. 

Then, breaking up the integral into time slots At that are large 

compared with T but small compared with the total excursion of t, 

one may write 

I = 1 R(ti)At . & I 
ti+At 

AV(t)AV(t+T)dt. 

ti 

(A-14) 

However, the correlation function of the fluctuating voltage is 

1 I 
ti+At 

C(T) = z AV(t)AV(t+T)dt (A-15) 
Jt 

i 

independent of ti and At by virtue of attributes of the random 

process. Thus, Eq. (A-14) becomes 

I 
t 

I = CC-C) R 
0 

(t)dt. (A-16) 
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Accordingly, 

t 
B(t)f2(t)Jcav(fi)dt, 

cav 0 
(A-17) 

where 

J 1- zz- cav 71 I 
C(T) cos Qrdr (~-18) 

-co 

is the power spectrum' of the fluctuating voltage. 

Nyquist's theorem' states that the power spectrum is equal to 

J cav(fi) = ; kT Rcav(Q2) (A-19) 

where Rcav (n) is the real part of the impedance looking back into 

the sum of all the cavity voltages, k is Boltzmann's constant, 

and T is the absolute temperature. 

The contribution to Hi + Hi from that part of G due to mag- 

netic field fluctuations AB evaluated is a manner similar to that 

of Eq. (A-11) is 

I 

t 
Y(t)g;(t)JMag(n)dt, 

Mag 0 

where 

J Mag(Q) = + kT - ITB(Q) 1' Real {Z(Q)) 

(A-20) 

(A-21) 

is the spectral density of the fluctuating magnetic field. Here 

TB(61) is the transfer function* between the azimuthally averaged 
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magnetic field and the excitation voltage and Z(n) is the impedance 6 

of the entire ring of magnets. 

Finally, the contribution to Hf + Hz from that part of G due 

to low level RF frequency AuRF is 

@+H;), = n It -Y(t)g;F(t)JRF(Q)dt 
0 

where 

JR,(n) = + kT * )TRF(Si) 12* Real(ZRR(SI)) 

(A-22) 

(A-23) 

is the spectral density of the fluctuating RF angular frequency. 

The transducer frequency response varies 4 from 2~ x 10 MHz/V at 

injection to 271 x 3 MHz/V at full energy. The impedance Z,(n) 

is about 1 MQ and is obtained by observing4 an rms noise voltage 

of 40 uV in the 75 kHz bandwidth circuit. 
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